Lyme Disease: The Hidden Epidemic
Raphael B. Stricker, M.D.
Vice President, International Lyme & Associated Diseases Society (ILADS)

House Committee on Foreign Affairs, Subcommittee on Africa, Global Health, and Human Rights
July 17, 2012

Summary

Lyme disease has reached epidemic proportions around the world. Recent animal and human studies have confirmed the potential for persistent infection with the corkscrew-shaped Lyme spirochete, *Borrelia burgdorferi*, as well as the complicating role of tick-borne coinfections associated with failure of short-course antibiotic therapy. Furthermore, renewed interest in the role of cell wall deficient (CWD) forms in chronic bacterial infection and progress in understanding the molecular mechanisms of biofilms has focused attention on these processes in chronic Lyme disease. Recognition of the importance of CWD forms and biofilms in tick-borne illness should stimulate pharmaceutical research into new antimicrobial agents that target these mechanisms of chronic infection with the Lyme spirochete. Concurrent clinical implementation of novel culture techniques and proteomic screening offers a chance to correct significant worldwide deficiencies in Lyme testing. Advances in these areas have the potential to revolutionize the diagnosis and treatment of Lyme disease in the future.

Introduction

Lyme disease is one of the most controversial illnesses in the history of medicine.

Over the past decade, two opposing camps have emerged in the controversy over this tick-borne illness. One camp is represented by the Infectious Diseases Society of America (IDSA), which maintains that Lyme disease is a rare illness localized to well-defined areas of the world. According to IDSA, the disease is ‘hard to catch and easy to cure’ because the infection is rarely encountered, easily diagnosed in its early stage by means of accurate commercial laboratory tests and effectively treated with a short course of antibiotics over 2-4 weeks. Chronic infection with the corkscrew-shaped Lyme spirochete, *Borrelia burgdorferi*, is rare or non-existent. The IDSA view is based on the work of a small group of researchers who have little or no contact with Lyme disease patients and use their limited research results to restrict clinical care for sick patients with persistent Lyme disease symptoms.

The opposing camp is represented by the International Lyme and Associated Diseases Society (ILADS), which argues that Lyme disease is not rare and, because its spread is facilitated by rodents, deer and birds, can be found in an unpredictable distribution around the world accompanied by other tick-borne coinfections that may complicate the clinical picture. According to ILADS, tickbites often go unnoticed and commercial laboratory testing for Lyme disease is inaccurate. Consequently the disease is often not recognized and may persist in a large number of patients who are untreated or undertreated, requiring prolonged antibiotic therapy to eradicate persistent infection with the evasive Lyme spirochete. The ILADS view is supported by independent clinicians and researchers around the globe who view the science of Lyme disease as unsettled and feel that decisions about the most appropriate treatment for patients with Lyme disease should be left in the hands of clinicians.
The controversy over Lyme disease came to a head in November 2006 when IDSA released new guidelines severely limiting treatment options for patients with persistent Lyme symptoms. The guidelines were so restrictive that the Attorney General of Connecticut initiated an unprecedented investigation into potential anti-trust violations by IDSA, the dominant infectious disease society in the United States, in its formulation of the guidelines. As a result, IDSA created a new scientific panel to review its Lyme guidelines under the guidance of a specialist in medical ethics. The review panel held a hearing in July 2009 that was broadcast live over the internet and featured more than 300 peer-reviewed articles and 1,600 pages of analysis supporting the concept of persistent infection despite short-course antibiotic therapy of 2-4 weeks in patients with persistent Lyme disease symptoms. Despite this extensive evidence, the IDSA review panel voted unanimously to uphold the flawed Lyme guidelines.

Advances and Contradictions

The unprecedented legal action against the IDSA Lyme guidelines reflected frustration over the widening gap between groundbreaking experimental evidence and entrenched clinical practices in Lyme disease. The past decade witnessed significant advances in understanding the pathogenesis of B. burgdorferi infection. The genome of B. burgdorferi was sequenced in its entirety, and the biologic and immunologic contribution of various genes was elucidated. In particular, the mechanisms of “stealth pathology” utilized by the Lyme spirochete in evading the host immune response and establishing infection in diverse tissues was illuminated. Animal models of Lyme disease in gerbils, hamsters, rats, mice, dogs, monkeys and horses provided evidence for persistent infection in various tissues following experimental transmission of B. burgdorferi. In many of these models, infection persisted despite the equivalent of short-course antibiotic therapy.

While progress was being made in research models of tick-borne disease, controversy raged over the clinical features of Lyme disease. A growing number of studies highlighted persistent symptoms in patients following clinical infection with B. burgdorferi, but the pathologic mechanism of those symptoms remained murky. The concepts of ‘post-Lyme syndrome’, ‘post-treatment Lyme disease’ and ‘chronic Lyme disease’ were hotly debated, and the issues of post-infectious autoimmunity versus persistent spirochetal infection remained unsettled despite numerous studies from Europe and the United States that documented failure of short-course antibiotic therapy and persistent B. burgdorferi infection in various tissues. The role of prolonged antibiotic therapy in patients with persistent Lyme symptoms was also debated based on conflicting study results involving a limited number of patients who had been symptomatic for long periods and had already failed similar treatment. The statistical validity of these studies and generalizability to the majority of patients with persistent Lyme symptoms was also questioned.

Evidence for Chronic Infection

The comprehensive review of the IDSA Lyme guidelines provided strong evidence for chronic spirochetal infection in animal models of Lyme disease and patients with persistent Lyme symptoms. This evidence underscores the importance of chronic infection in Lyme disease and further discredits the restrictive IDSA view of the disease that continues to harm
patients by denying appropriate treatment. It also raises many questions about the mechanism(s) and optimum therapy for persistent spirochetal illness.

Complementing the evidence in favor of chronic *B. burgdorferi* infection, clinical and experimental studies have shown that tick-borne coinfections may also have chronic phases. In the past, reports of pathology due to *Babesia, Anaplasma, Ehrlichia*, *Bartonella* and *Rickettsia* species have focused on the fulminant acute forms of infection that are relatively easy to diagnose and often fatal in immunocompromised patients. More recently, these organisms have been associated with chronic persistent infection in animal models and humans. The presence of coinfecting organisms has been shown to enhance the symptoms and exacerbate the severity of Lyme disease. Thus recognition of chronic coinfections supports the concept of unresolved illness due to persistent infection with the Lyme spirochete.

Renewed Interest in Cell Wall Deficient Bacterial Forms

Cell wall deficient (CWD) bacterial forms were first described in 1935 by Klieneberger, who named them L-forms after the Lister Institute where she worked. Subsequent research by Dienes showed that various bacteria could form CWD colonies and then revert back to bacillary morphology under appropriate conditions. An extensive review by Domingue and Woody highlighted the extent of CWD morphology in many bacterial strains and the potential role of these mutant bacteria to produce persistent infection and chronic diseases. The confusing terminology used to describe CWD bacteria has hindered work in this field. While the term ‘L-form’ or ‘spheroplast’ describes CWD morphology in coccobacillary organisms, the term ‘cyst’ or ‘round body’ has been used to describe similar morphology in spirochetes.

Margulis et al. described CWD spirochetal forms in 1993. Subsequently Preac-Mursic and colleagues demonstrated the formation and cultivation of *B. burgdorferi* ‘spheroplast-L-form variants’, and Brorson et al. showed that these forms, which he termed cysts or round bodies, could revert to viable spiral forms of the bacteria. This observation has been confirmed by other investigators. Although the pathogenicity of CWD borrelial forms has been questioned, recent studies have suggested a link between CWD borrelia and neurodegenerative diseases including Alzheimer’s disease, and resistance of cystic forms to antibiotic therapy has been documented. Recent advances in understanding molecular mechanisms of CWD bacterial formation has offered a glimpse at new treatment approaches to chronic Lyme disease. Currently the only antibiotic that reliably targets the cyst form of *B. burgdorferi* is metronidazole or its derivatives, while other agents have yielded negative or conflicting results with regard to cysts. Given the potential importance of CWD forms in persistent *B. burgdorferi* infection, newer antibiotics aimed at this evasive mutant are desperately needed to eradicate chronic infection in Lyme disease.

Biofilms

Another mechanism of chronic infection involves the formation of biofilms. These adherent polysaccharide-based matrices protect bacteria from the hostile host environment and facilitate persistent infection. Biofilms are responsible for a number of chronic infections, including gum disease, ear infections, heart valve disease, gastrointestinal infection and chronic lung disease. Sapi and MacDonald raised the possibility of biofilm formation by *B. burgdorferi*, and subsequent work has demonstrated these spirochetal formations in culture and in the tick gut.
Combinations of borrelial cysts and putative biofilms have also been noted in patient skin biopsies using focus floating microscopy. Biofilm formation is dependent on cyclic di-GMP expression, and recent studies have shown that B. burgdorferi expresses this regulatory molecule. Coordinated steps in the elaboration of biofilms have been demonstrated in other bacteria, and it remains to be seen whether similar molecular processes occur in borrelial strains and whether these processes play a role in persistent infection.

To date no antibiotic treatment exists that targets biofilm formation. However elucidation of the regulatory steps in the biofilm process should allow development of “designer” antibiotics that interfere with this process. It has recently been shown that mutations in genes that regulate biofilm development can interfere with the elaboration of new biofilms and also cause collapse of established biofilm colonies. These findings indicate the potential effectiveness of newer antibiotics that target the biofilm regulatory process, suggesting a novel approach to treatment of Lyme disease and other chronic infections.

Testing for Lyme Disease

Clinical testing for Lyme disease remains abysmal. The two-tier algorithm recommended by the Centers for Disease Control and Prevention (CDC) utilizes a screening enzyme-linked immunosorbent assay (ELISA) or immunofluorescence assay (IFA) followed by a confirmatory Western blot. Although this approach has a high test specificity of 99% (ie, only 1% of tests yield false-positive results and a wrong diagnosis), the sensitivity of the two-tier approach in Lyme disease patients tested at least 4-6 weeks after infection is only 46% (ie, more than half the tests yield false-negative results and miss the diagnosis) (Table 3). This level of sensitivity is inadequate for a clinical diagnostic test and, by comparison, far below the 99.68% sensitivity of diagnostic HIV testing. Furthermore, the misconception that two-tier testing is highly sensitive for Lyme disease patients with persistent arthritic or neurologic symptoms derives from a study that selected patients based on positive Lyme testing and then showed high levels of two-tier test positivity. This circular reasoning is a systematic problem with the evaluation of Lyme testing.

There are a number of reasons for the inaccuracy of Lyme testing, including use of less antigenic laboratory spirochetal strains in the commercial test kits, elimination of important spirochetal target proteins from those kits and lack of standardization of the commercial Lyme assays. Gender bias may also be a factor: while chronic Lyme disease is reportedly more common in women, the two-tier test system yields positive results more often in men. Although a newer ELISA targeting the conserved VlsE or C6 peptide of B. burgdorferi has been developed, this test system does not appear to be more sensitive than the two-tier approach. While molecular testing has been useful for diagnostic confirmation and treatment monitoring in other illnesses, molecular testing for B. burgdorferi has been unreliable, and newer molecular techniques targeting tickborne agents remain unproven and expensive. Assays for more accessible surrogate markers of Lyme disease have yet to be accepted by the general medical community. Thus testing for Lyme disease remains problematic.

A newer approach to Lyme testing involves the use of proteomics. Based on the known genetic makeup of the spirochete, numerous proteins can be generated in vitro and tested for antigenicity using Lyme patient sera. In this manner, novel target proteins can be identified, and conceivably new test systems based on these proteins can be developed without even knowing the
function or location of the antigens within the spirochete. Work on these proteomic-based test systems is already in progress, but extensive clinical validation will be required to bring those tests to market. Nevertheless the proteomic approach to Lyme testing holds great promise for more accurate serological diagnosis, and development of proteomic testing for tick-borne diseases provides a useful diagnostic model for other chronic and elusive infections. Beyond proteomics, novel test systems that exploit electromagnetic signals generated by bacterial DNA sequences may also prove to be effective in the diagnosis of chronic Lyme disease. Novel culture techniques for *B. burgdorferi* are also being evaluated.

Big Pharma is Watching

Until now, the pharmaceutical industry has steered clear of Lyme disease. There are a number of reasons for this avoidance, including the fear of entry into a controversial field and the perception that Lyme disease is easy to treat with short-course generic antibiotics. In simple terms, uncertainty about the disease and lack of profitable treatment options has limited pharmaceutical involvement in Lyme disease. This scenario is in stark contrast to the AIDS epidemic, where the prospect of billion-dollar antiviral drug sales propelled the pharmaceutical industry into a leading role in combating the pandemic. In a more recent example, the development of effective (and lucrative) drug therapy for fibromyalgia has boosted the status of that previously maligned diagnostic entity and fostered unprecedented awareness of the condition in the medical community and among the lay public. The lack of a similar dynamic in Lyme disease has been a significant roadblock to progress in treating the tick-borne illness.

Progress in understanding the various aspects of Lyme disease outlined above should encourage the pharmaceutical industry to assume a more active role in the Lyme arena. The evidence for chronic infection with the Lyme spirochete and coinfecting organisms supports a greater need for antibiotic therapy in this disease beyond the 2-4 weeks specified in the discredited IDSA guidelines. The need for more effective treatment of this chronic infection in turn supports the use of more complex (and lucrative) antibiotic regimens in Lyme disease. In a similar vein, targeting CWD forms of *B. burgdorferi* and biofilm formation offers the prospect of new antibiotic approaches to the disease, with an exciting opportunity for innovative therapeutics and increased profits. Development of antibiotic agents that target spirochetal CWD forms and biofilms may also provide valuable insight into the treatment of other chronic infections. The development of more reliable testing for Lyme disease based on proteomics and culture techniques will help to define the population in need of these innovative therapies. More reliable standardized testing will also assure reimbursement for newer Lyme therapies from third party payors.

Conclusions

In conclusion, extensive evidence now shows that persistent symptoms of Lyme disease are due to chronic infection with the Lyme spirochete in conjunction with other tick-borne coinfections. The mechanisms of chronic infection appear to involve CWD forms of the spirochete and biofilm formation, and these infectious processes are attractive targets for future drug development. Institution of more reliable Lyme testing based on culture techniques and proteomics should dispel uncertainty over the presence of the disease and facilitate identification of patients who require treatment. The opportunity for the pharmaceutical industry to develop new drugs targeting novel infectious processes in a well-defined patient population will lead to broader recognition and more effective treatment of Lyme disease in the future.
References

27. Chang YF, Ku YW, Chang CF, Chang CD, McDonough SP, Divers T, Pough M, Torres A.

69. Zeidner NS, Dolan MC, Massung R, Piesman J, Fish D. Coinfection with *Borrelia*

83. de Oliveira A, Fonseca AH, da Costa CM, Mantovani E, Yoshinari NH. Growth, cysts and kinetics of *Borrelia garinii* (Spirochaetales: Spirochaetacea) in different culture media.

Table 1: Evidence for Persistent Infection in Animal Models of Lyme Disease*

<table>
<thead>
<tr>
<th>Study/Year/Reference</th>
<th>Animal Origin</th>
<th>Persistence of B. burgdorferi Shown by</th>
<th>B. burgdorferi Detection**</th>
<th>Sample Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preac-Mursic et al, 1990¹</td>
<td>Gerbils</td>
<td>Culture, Histology</td>
<td>6 months</td>
<td>Joints, Skin, Spleen</td>
</tr>
<tr>
<td>Duray & Johnson, 1986²</td>
<td>Hamsters</td>
<td>Culture, Histology</td>
<td>9 months</td>
<td>Spleen, Kidney, Eye</td>
</tr>
<tr>
<td>Schmitz et al, 1991³</td>
<td>Hamsters</td>
<td>Culture, Histology</td>
<td>16 months</td>
<td>Synovium,</td>
</tr>
<tr>
<td>Moody et al, 1990⁴</td>
<td>Rats</td>
<td>Culture, Histology</td>
<td>12 months</td>
<td>Spleen, Kidney, Joints</td>
</tr>
<tr>
<td>Malawista et al, 1994⁵</td>
<td>Mice</td>
<td>Culture, PCR, Histology</td>
<td>60 days†</td>
<td>Ear, Bladder</td>
</tr>
<tr>
<td>Moody et al, 1994⁶</td>
<td>Mice</td>
<td>Culture, Histology</td>
<td>90 days†</td>
<td>Joints, Heart</td>
</tr>
<tr>
<td>Bockenstedt et al, 2002⁷</td>
<td>Mice</td>
<td>PCR, Xenodiagnosis</td>
<td>12 weeks†</td>
<td>Joints, Bladder</td>
</tr>
<tr>
<td>Hodzic et al, 2008⁸</td>
<td>Mice</td>
<td>PCR, Histology, Xenodiagnosis</td>
<td>12 weeks†</td>
<td>Joints, Heart</td>
</tr>
<tr>
<td>Yrjänäinen et al, 2010⁹</td>
<td>Mice</td>
<td>PCR, Xenodiagnosis</td>
<td>30 weeks†</td>
<td>Joints</td>
</tr>
<tr>
<td>Barthold et al, 2010¹⁰</td>
<td>Mice</td>
<td>PCR, Histology, Xenodiagnosis</td>
<td>12 weeks†</td>
<td>Joints, Heart, Muscle</td>
</tr>
<tr>
<td>Bockenstedt et al, 2012¹¹</td>
<td>Mice</td>
<td>PCR, Histology, Xenodiagnosis</td>
<td>12 weeks†</td>
<td>Joints</td>
</tr>
<tr>
<td>2. Dogs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straubinger et al, 1997¹²</td>
<td>Dogs</td>
<td>PCR, Histology</td>
<td>3-6 months†</td>
<td>Skin, LN</td>
</tr>
<tr>
<td>Straubinger, 2000¹³</td>
<td>Dogs</td>
<td>PCR</td>
<td>500 days†</td>
<td>Skin, Muscle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Joints</td>
</tr>
<tr>
<td>3. Monkeys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts et al, 1995¹⁴</td>
<td>Monkeys</td>
<td>Culture, PCR, Histology</td>
<td>6 months</td>
<td>Joints, Nerve</td>
</tr>
<tr>
<td>Robert et al, 1998¹⁵</td>
<td>Monkeys</td>
<td>Culture, PCR, Histology</td>
<td>46 months</td>
<td>Nerve</td>
</tr>
<tr>
<td>Pachner et al, 2001¹⁶</td>
<td>Monkeys</td>
<td>Culture, Histology, PCR</td>
<td>3 months</td>
<td>Brain, Nerve, Heart</td>
</tr>
<tr>
<td>Cadavid et al, 2004¹⁷</td>
<td>Monkeys</td>
<td>Culture, Histology, PCR</td>
<td>32 months</td>
<td>Heart</td>
</tr>
<tr>
<td>Miller et al, 2005¹⁸</td>
<td>Monkeys</td>
<td>PCR</td>
<td>3 months</td>
<td>Brain, Nerve, Heart, Muscle, Skin, Bladder, Skin, Heart, Bladder, Joints, Tendon, Spleen</td>
</tr>
<tr>
<td>Embers et al, 2012¹⁹</td>
<td>Monkeys</td>
<td>Culture, Histology, PCR, Xenodiagnosis</td>
<td>6-12 months†</td>
<td></td>
</tr>
<tr>
<td>4. Horses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang et al, 2005²⁰</td>
<td>Ponies</td>
<td>Culture</td>
<td>5 months†</td>
<td>LN, Joints, Muscle</td>
</tr>
<tr>
<td>Imai et al, 2011²¹</td>
<td>Horses</td>
<td>Histology, PCR</td>
<td>1-4 years†</td>
<td>Brain, Nerve</td>
</tr>
</tbody>
</table>

* PCR, polymerase chain reaction; LN, lymph node.
**Time from initial infection to final positive testing point.
†Detectable B. burgdorferi following antibiotic treatment.
Table References:
Table 2: Evidence for Persistent Human Infection Following Treatment of Lyme Disease*†

<table>
<thead>
<tr>
<th>Study/Year/Reference</th>
<th>Study Origin</th>
<th>Persistence of B. burgdorferi Shown by</th>
<th>Sample Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weber et al, 1988¹</td>
<td>Europe</td>
<td>Histology</td>
<td>Brain, liver (Autopsy)**</td>
</tr>
<tr>
<td>Schmidli et al, 1988²</td>
<td>Europe</td>
<td>Culture</td>
<td>Synovial Fluid</td>
</tr>
<tr>
<td>Cimmino et al, 1989³</td>
<td>Europe</td>
<td>Histology</td>
<td>Spleen</td>
</tr>
<tr>
<td>Preac-Mursic et al, 1989⁴</td>
<td>Europe</td>
<td>Culture</td>
<td>Skin Bx, CSF</td>
</tr>
<tr>
<td>Pfister et al, 1991⁵</td>
<td>Europe</td>
<td>Culture</td>
<td>CSF</td>
</tr>
<tr>
<td>Strle et al, 1993⁶</td>
<td>Europe</td>
<td>Culture</td>
<td>Skin Bx</td>
</tr>
<tr>
<td>Preac-Mursic et al, 1993⁷</td>
<td>Europe</td>
<td>Culture</td>
<td>Iris Bx</td>
</tr>
<tr>
<td>Haupl et al, 1993⁸</td>
<td>Europe</td>
<td>Culture</td>
<td>Ligament Bx</td>
</tr>
<tr>
<td>Strle et al, 1996⁹</td>
<td>Europe</td>
<td>Culture</td>
<td>Skin Bx</td>
</tr>
<tr>
<td>Preac-Mursic et al, 1996¹⁰</td>
<td>Europe</td>
<td>Culture</td>
<td>Skin Bx, CSF</td>
</tr>
<tr>
<td>Oksi et al, 1996¹¹</td>
<td>Europe</td>
<td>Culture</td>
<td>CSF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>Brain Bx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>Brain (Autopsy)</td>
</tr>
<tr>
<td>Priem et al, 1998¹²</td>
<td>Europe</td>
<td>PCR</td>
<td>Synovial Bx/Fluid</td>
</tr>
<tr>
<td>Oksi et al, 1999¹³</td>
<td>Europe</td>
<td>Culture, PCR</td>
<td>Blood</td>
</tr>
<tr>
<td>Breier et al, 2001¹⁴</td>
<td>Europe</td>
<td>Culture</td>
<td>Skin Bx</td>
</tr>
<tr>
<td>Hunfeld et al, 2005¹⁵</td>
<td>Europe</td>
<td>Culture</td>
<td>Skin Bx</td>
</tr>
<tr>
<td>Hudson et al, 1998¹⁶</td>
<td>Australia</td>
<td>Culture, PCR</td>
<td>Skin Bx</td>
</tr>
<tr>
<td>Steere et al, 1988¹⁷</td>
<td>USA</td>
<td>Histology</td>
<td>Synovial Bx</td>
</tr>
<tr>
<td>Kirsch et al, 1988¹⁸</td>
<td>USA</td>
<td>Histology</td>
<td>LN (Autopsy)</td>
</tr>
<tr>
<td>Lieger et al, 1993¹⁹</td>
<td>USA</td>
<td>Histology</td>
<td>Skin Bx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCR</td>
<td>Blood</td>
</tr>
<tr>
<td>Battafarano et al, 1993²⁰</td>
<td>USA</td>
<td>Histology, PCR</td>
<td>Synovial Bx/Fluid</td>
</tr>
<tr>
<td>Chancellor et al, 1993²¹</td>
<td>USA</td>
<td>Histology</td>
<td>Bladder Bx</td>
</tr>
<tr>
<td>Nocton et al, 1994²²</td>
<td>USA</td>
<td>PCR</td>
<td>Synovial Fluid</td>
</tr>
<tr>
<td>Shadick et al, 1994²³</td>
<td>USA</td>
<td>Histology</td>
<td>Brain (Autopsy)</td>
</tr>
<tr>
<td>Masters et al, 1994²⁴</td>
<td>USA</td>
<td>Culture</td>
<td>Blood</td>
</tr>
<tr>
<td>Lawrence et al, 1995²⁵</td>
<td>USA</td>
<td>PCR</td>
<td>CSF</td>
</tr>
<tr>
<td>Bayer et al, 1996²⁶</td>
<td>USA</td>
<td>PCR</td>
<td>Urine</td>
</tr>
<tr>
<td>Nocton et al, 1996²⁷</td>
<td>USA</td>
<td>PCR</td>
<td>CSF</td>
</tr>
</tbody>
</table>

†Adapted from Reference 1.
*All patients had received a minimum of 2-4 weeks of antibiotic therapy. PCR, polymerase chain reaction; Bx, biopsy; CSF, cerebrospinal fluid; LN, lymph node.
**Mother treated with antibiotics during pregnancy; newborn died.

Table References:

Table 3: Sensitivity/Specificity of Commercial Two-Tier Testing for Convalescent/Late Stage Lyme Disease*

<table>
<thead>
<tr>
<th>Study/Year**</th>
<th>Location</th>
<th>Patients/Controls</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schmitz et al 1993</td>
<td>USA</td>
<td>25/28</td>
<td>66%</td>
<td>100%</td>
</tr>
<tr>
<td>Engstrom et al 1995</td>
<td>USA</td>
<td>55/159†</td>
<td>55%</td>
<td>96%</td>
</tr>
<tr>
<td>Ledue et al 1996</td>
<td>USA</td>
<td>41/53</td>
<td>44%</td>
<td>100%</td>
</tr>
<tr>
<td>Tilton et al 1997</td>
<td>USA</td>
<td>23/23</td>
<td>45%</td>
<td>100%</td>
</tr>
<tr>
<td>Trevejo et al 1999</td>
<td>USA</td>
<td>74/38</td>
<td>29%</td>
<td>100%</td>
</tr>
<tr>
<td>Bacon et al 2003</td>
<td>USA</td>
<td>106/559</td>
<td>67%</td>
<td>99%</td>
</tr>
<tr>
<td>Binnicker et al 2008</td>
<td>USA</td>
<td>35/5</td>
<td>49%</td>
<td>100%</td>
</tr>
<tr>
<td>Steere et al 2008</td>
<td>USA</td>
<td>76/86††</td>
<td>18%</td>
<td>99%</td>
</tr>
</tbody>
</table>

TOTALS | **USA: 8** | **435/951** | **46%** | **99%**

* Adapted from Reference 2.

** Limited to studies from USA that included negative controls

† Non-commercial ELISA and Western blot

†† Non-commercial ELISA